Native Fungi Combinations Show Promise Against Aflatoxin

— Written By
en Español / em Português
Español

El inglés es el idioma de control de esta página. En la medida en que haya algún conflicto entre la traducción al inglés y la traducción, el inglés prevalece.

Al hacer clic en el enlace de traducción se activa un servicio de traducción gratuito para convertir la página al español. Al igual que con cualquier traducción por Internet, la conversión no es sensible al contexto y puede que no traduzca el texto en su significado original. NC State Extension no garantiza la exactitud del texto traducido. Por favor, tenga en cuenta que algunas aplicaciones y/o servicios pueden no funcionar como se espera cuando se traducen.


Português

Inglês é o idioma de controle desta página. Na medida que haja algum conflito entre o texto original em Inglês e a tradução, o Inglês prevalece.

Ao clicar no link de tradução, um serviço gratuito de tradução será ativado para converter a página para o Português. Como em qualquer tradução pela internet, a conversão não é sensivel ao contexto e pode não ocorrer a tradução para o significado orginal. O serviço de Extensão da Carolina do Norte (NC State Extension) não garante a exatidão do texto traduzido. Por favor, observe que algumas funções ou serviços podem não funcionar como esperado após a tradução.


English

English is the controlling language of this page. To the extent there is any conflict between the English text and the translation, English controls.

Clicking on the translation link activates a free translation service to convert the page to Spanish. As with any Internet translation, the conversion is not context-sensitive and may not translate the text to its original meaning. NC State Extension does not guarantee the accuracy of the translated text. Please note that some applications and/or services may not function as expected when translated.

Collapse ▲

ACSESS | 4/3/2019 | Via Morning AgClips

MADISON, Wisc. – It’s not fun when a fungus contaminates crops. Safe native fungi, however, show promise in the fight against toxic fungal contamination.

The fungus Aspergillus flavus can infect several crops, including corn. Some varieties, or strains, of A. flavus produce aflatoxins. Aflatoxin contamination costs U.S. farmers billions of dollars every year. Worse, aflatoxins are harmful for humans and animals.

NCSU Corn Variety Trial

To reduce aflatoxin contamination of crops, farmers use safe commercial strains of A. flavus. These biocontrol strains do not produce aflatoxins. When applied to crops, the biocontrol strains outcompete the harmful aflatoxin-producing fungi. That reliably reduces levels of aflatoxins in the harvest, transport, and storage stages.

However, commercial strains may not be the only answer. A new study shows that using safe, native strains of A. flavus can be as effective, or even more effective, than commercial strains.

“Using native A. flavus strains could have many advantages,” says Ignazio Carbone, lead author of the new study. “Native strains may be better adapted to the soil type and weather conditions. Therefore, they may perform better in the field compared to non-native strains.” Carbone is a researcher at North Carolina State University.

Moreover, using commercial strains can have some disadvantages. They usually need to be reapplied each year, at a cost of $20 per acre. Also, the application has to be done aerially or manually. “That can deter farmers from using commercial strains,” Carbone explains.

Native strains, on the other hand, occur naturally in growing areas. They may be more persistent in the soil and not need to be reapplied every year.

Carbone and colleagues tested native strains of A. flavus that produce no or low levels of aflatoxin. They also tested commercial strains. Both reduced crop aflatoxin levels.

Corn for human consumption can have maximum aflatoxin levels of 20 parts per billion, per FDA regulation. Untreated crops had aflatoxin levels above 35 parts per billion. Native and commercial strains reduced aflatoxin levels to lower than 10 parts per billion.

Unexpectedly, the study also showed that certain combinations of native strains are more effective than commercial strains in reducing aflatoxin levels. That’s because the combinations take advantage of fungal biology: their mating types are compatible, allowing them to reproduce and sustain their population.

When the researchers applied native strains of compatible mating types to the test plots, aflatoxin levels were reduced to less than 2 parts per billion in some cases. This was a better outcome than any commercial strain.

“Our results suggest that using native strains could lead to sustained reductions of aflatoxin levels. Using native strains could be very cost-effective for farmers over the long term,” says Carbone.

Although this study was conducted in North Carolina, Carbone anticipates the approach can work in other areas. A preliminary experiment in Texas also showed that paired native strains reduced aflatoxin levels more efficiently compared to a single commercial strain.

Continue reading the full article at MorningAgClips.