

# Navigating One's Way Through Peanut Innovation Lab Projects in Africa:

# **Opportunities Create Challenges**

David Jordan Department of Crop and Soil Sciences North Carolina State University





**NC STATE UNIVERSITY** 





# Navigating One's Way Through Peanut Innovation Lab Projects in Africa: Opportunities <u>and</u> Challenges



Half empty or half full? How much does it really matter?















#### This audience

And some Epicurean and Stoic philosophers came across him as well and said, "What would this seedpecking ditherer like to say?"

David Bentley Hart





The speaker



# **Role of Agriculture**

Produce adequate amounts of high-quality foods

Enhance the natural resource base and environment

Contribute to well-being of farmers and their communities

## Make farming economically viable

NRC 2010 in Crowder and Reganold, 2015





Peanut Innovation Lab College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA



# **Seminar Topics**

- Getting started
- Value to US and host country
- Quick overview of global peanut production systems
- Variety release (*Peanut CRSP*)
- IPM manual (Peanut CRSP)
- PMIL (Peanut Mycotoxin or Peanut and Mycotoxin)
- Brief overview of aflatoxin (US Africa contrast)
- Value chain results from Ghana
- Aflatoxin book chapter (assumptions)
- Ag Diversification project in Malawi









# International Journey

### UNI 323 (STS 323)

- World Hunger Day
- Church projects in Central America and Mozambique
- Farmer to Farmer Exchange Program in Mozambique
- Peanut CRSP in Ghana (2 cycles)
- EHELD project in Liberia
- PMIL (Ghana Value Chain, Southern Africa Value Chain, Haiti Value Chain)
- Peanut Innovation Lab (current)
- Ag Diversification in Malawi (current)















#### **CROP AND SOIL SCIENCES**







Peanut Innovation Lab College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA





# Value of USAID Projects Host Country

- Operating funds
- Professional development
- Discovery, verification and delivery of technologies
- Recommendations to farmers









**CROP AND SOIL SCIENCES** 

Value of USAID Projects **United States - NCSU Operating funds Professional development** Appreciation of budgeting The bigger picture Case studies for STS 323 Knowledge of aflatoxin Getting along with people Reading books







**CROP AND SOIL SCIENCES** 

#### Perceptions of Undergraduate Students Regarding Global Hunger<sup>1</sup>

Robert Patterson<sup>2</sup>, David Jordan<sup>2</sup>, Carla Cave<sup>2</sup>, Gary Moore<sup>3</sup>, Wendy Warner<sup>3</sup>, Emily Sugg<sup>2</sup>, Lori Unruh-Snyder<sup>2</sup> and Matthew Vann<sup>2</sup> North Carolina State University Raleigh, NC

- 1) Distribution and transportation
- 2) Awareness of the problem
- 3) Improve farmer education
- 4) Government and politics
- 5) Population dynamics
- Ten years, 20 semester, ~4,000 students







#### **CROP AND SOIL SCIENCES**



Apparent draw to somewhat troubling topics









# Value of USAID Projects Both Partners

- Lifelong friends and colleagues
- Major and incremental impacts
- Practice and application of science
- Service
- Purpose







## **Possible Titles**

My \$1.4 Million Data Set

Giving Away Your Operating Funds as PI Doesn't Really Help

You Thought NCSU was Getting One Million: How did that Happen?

Wiring Your Personal Money to Africa to Get the Project Going is Not Wise

Really?

It Seemed to be a Good Idea at the Time







#### Relative Distribution of Harvested Peanut Land Area (Percent of India) and Relative Yield per Unit Area (Percent of US)



Fletcher and Shi. 2016. An overview of world peanut markets. Pages 267-287 in Stalker and Wilson, eds. *Peanuts: Genetics, Processing, and Utilization*. AOCS Press, Elsevier.









### **Essential Elements of Efficient and Sustainable Peanut Production**

- Crop rotation and sequence
- **Crop genetics**
- Stand establishment
- Pest management
- Fertility
- Adequate water
- Harvesting capacity
- Drying and storing capacity
- Transportation and access to markets
- Others







#### **CROP AND SOIL SCIENCES**

#### Estimated Budgets (% of total) for Peanut Production in US and Argentina

| United States             |                    | Argentina                     |         |  |
|---------------------------|--------------------|-------------------------------|---------|--|
| ltem                      | Percent            | Item                          | Percent |  |
| Seed                      | 14                 | Seed                          | 14      |  |
| Fertilizer                | 7                  | Planting                      | 4       |  |
| Inoculant                 | 1                  | Herbicides                    | 9       |  |
| Lime                      | 3                  | Fungicides                    | 8       |  |
| Gypsum                    | 3                  | Spraying                      | 4       |  |
| Herbicides                | 8                  | Digging                       | 4       |  |
| Insecticides              | 3                  | Harvesting                    | 8       |  |
| Fungicides                | 13                 | Transport                     | 8       |  |
| Scouting                  | 3                  | Land rent                     | 40      |  |
| Hauling                   | 4                  | Administration                | 1       |  |
| Dry and clean             | 14                 |                               |         |  |
| Check off                 | 1                  |                               |         |  |
| National                  | 1                  |                               |         |  |
| Crop insurance            | 5                  |                               |         |  |
| Tractor/machinery         | 9                  |                               |         |  |
| Labor                     | 8                  |                               |         |  |
| Interest                  | 2                  |                               |         |  |
| Bullen et al. 2016. North | Carolina Cooperati | ve Extension Service. AG-331. |         |  |

Bullen et al. 2016. North Carolina Cooperative Extension Service. AG-331 Morichetti. 2016. Personal communication, Argentina.







| Estimated Budgets (% of total) for Peanut in India and Ghana |         |         |         |  |
|--------------------------------------------------------------|---------|---------|---------|--|
| India                                                        |         | Ghana   |         |  |
| Input                                                        | Percent | Input   | Percent |  |
| Labor                                                        | 47      | Labor   | 91      |  |
| Seed                                                         | 28      | Plowing | 9       |  |
| Fertilizer                                                   | 16      |         |         |  |
| Insecticide                                                  | 2       |         |         |  |
| Irrigation                                                   | 4       |         |         |  |
| Interest                                                     | 3       |         |         |  |

Jangid et al. 2016. Comparative Analysis of Groundnut Growing States in Western India. Advances in Social Research. 2:1-6.

Mochia and Abudulai. 2016. Personal communication, Ghana, West Africa.













Peanut Innovation Lab College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA



Long flights help the transition from US system to Ghana system







Peanut Innovation Lab College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA















#### Evaluation and Release of Two Peanut Cultivars: A Case Study of Partnerships in Ghana Owusu–Akyaw et al., Peanut Science, 2019









| Releas                                                                                     | ed Groundnu |                          |  |  |
|--------------------------------------------------------------------------------------------|-------------|--------------------------|--|--|
| August 7, 2012                                                                             |             |                          |  |  |
| Breeder Code                                                                               | Name        | Descriptor               |  |  |
| ICG (X) SM 87057                                                                           | Yenyawoso   | There is no one like you |  |  |
| ICGV 88709                                                                                 | Otuhia      | Drives away poverty      |  |  |
| <sup>1</sup> Drs. James Yaw Asibuo and Mike Owusu-Akyaw, Crops<br>Institute, Kumasi, Ghana |             |                          |  |  |























**CROP AND SOIL SCIENCES** 

Comparison of agronomic characteristics of the cultivars Otuhia and Yenyawoso to other cultivars available in Ghana in 2010.<sup>a</sup>

| Cultivar                     | Days to 50% flowering | Days to pod<br>maturity | Kernel<br>content | Seed weight | Pod yield |
|------------------------------|-----------------------|-------------------------|-------------------|-------------|-----------|
|                              | No.                   | No                      |                   | g/100 seed  | kg/ha     |
| Otuhia                       | 27 b                  | 105 ab                  | 71 a              | 71 a        | 2,140 b   |
| Yenyawoso                    | 23 d                  | 90 c                    | 72 a              | 64 c        | 2,350 a   |
| Adepa                        | 28 ab                 | 106 a                   | 65 b              | 65 c        | 1,920 c   |
| FMIX 20-1-45                 | 27 b                  | 104 b                   | 67 b              | 69 ab       | 1,900 c   |
| GK 7 High Oleic              | 29 a                  | 106 a                   | 65 b              | 67 bc       | 1,900 c   |
| Konkoma/Chinese              | 24 c                  | 90 c                    | 59 c              | 54 d        | 1,160 d   |
| RRR-MDR-8-16                 | 27 b                  | 106 a                   | 65 b              | 68 abc      | 1,940 c   |
| Coefficient of variation (%) | 3.3                   | 1.0                     | 4.0               | 5.2         | 5.5       |

<sup>a</sup>Means within a column followed by the same letter are not significantly different at  $p \le 0.05$  according to Fisher's Protected LSD test. Data are pooled over six locations (Atebubu, Derma, Ejura, Kwadaso, Somanya, and Wenchi) in 2010.









Seed Systems Purity Quality Access Availability Delivery









**CROP AND SOIL SCIENCES** 

### **Broader Message and Fun with Colleagues**











**CROP AND SOIL SCIENCES** 

## Letting Perfection be the Enemy of the Good?





Editors M. Owusu-Akyaw M.B. Mochiah S. Gyasi-Boakye J.N. Asafu-Agyei









The Contributions of Pesticides to Pest Management in Meeting the Global Need for Food Production by 2050



Considering the inevitability of a growing population, cost-efficient food production must increase; with effective policies, proper regulation, and safely training, pesticide use will continue to play an important role in that food production. (Photo from happykanppy/Shutterstock.)

#### ABSTRACT

The term *pcsticidc*<sup>1</sup> has been around for centuries, and it describes many different chemicals. The term has also—at times—been maligned and misunderstood. The authors of this publication use extensive data and provide clear examples to establish that pesticide use in agriculture has

- increased crop yield and quality,
  lessened the workload of pest man-
- agement, and

<sup>1</sup> Italicized terms (except genus/species names and published material titles) are defined in the Glossary.  improved the prospects for longterm sustainable food production.
 important role in With a speci

This paper gives a brief background about the use of pesticides and a thorough examination of why they have become popular and widely used. Considering the inevitability of a growing population, cost-efficient food production must increase. Intelligent use of pesticides has led to crop management that is more efficient, sustainable, and productive (United Nations 2012). Of course there are controversies and

challenges, but with effective policies, proper regulation, and safety training, pesticide use will continue to play an

important role in food production. With a special consideration of

catastrophic famines and crop management practices of the past, the authors organize the vast amount of information around several key concepts:

- Fungicide use and its impact both in the United States and around the world
- Herbicide use, weed management, and higher yields that have resulted from sound weed control practices
- Arthropod management involving insecticide use, with a consideration of the problems that have occurred

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of CAST.

### NC STATE UNIVERSITY

#### **CROP AND SOIL SCIENCES**

# **IPM** Prevent **A**void Monitor **S**uppress







**CROP AND SOIL SCIENCES** 

College of Agricultural & Environmental Sciences UNIVERSITY OF GEORGIA

U.S. ENVIRONME



