Improving Peanut Production and Pest Management Recommendations through Applied Research

Proposal for 2023 season

Project Investigator:

David Jordan, Department of Crop and Soil Sciences

Cooperators:

Rick Brandenburg, Department of Entomology and Plant Pathology

Jeff Dunne, Department of Crop and Soil Sciences

Gary Roberson, Department of Biological and Agricultural Engineering

Dan Anco, Clemson

Maria Balota, Virginia Tech

Peanut Agronomists and Weed Scientists in other states

Improving Peanut Production and Pest Management Recommendations Through Applied Research

Objective 1. To develop solutions to agronomic issues associated with peanut production in North Carolina

Objective 2. To cooperate with the plant pathologist, entomologist, and plant breeder at NCSU to refine IPM strategies for peanut in North Carolina

Objective 3. To conduct appropriate research to develop weed management strategies for traditional and herbicide resistant weeds in peanut in North Carolina

Objective 4. To continue rotation and tillage trials in order to develop more effective cropping systems

Objective 5. Assisting Cooperative Extension Service agents with pod maturity clinics

Objective 6. Enhancing Cooperative Extension Service agent expertise in managing peanut

Total Budget - \$30,000

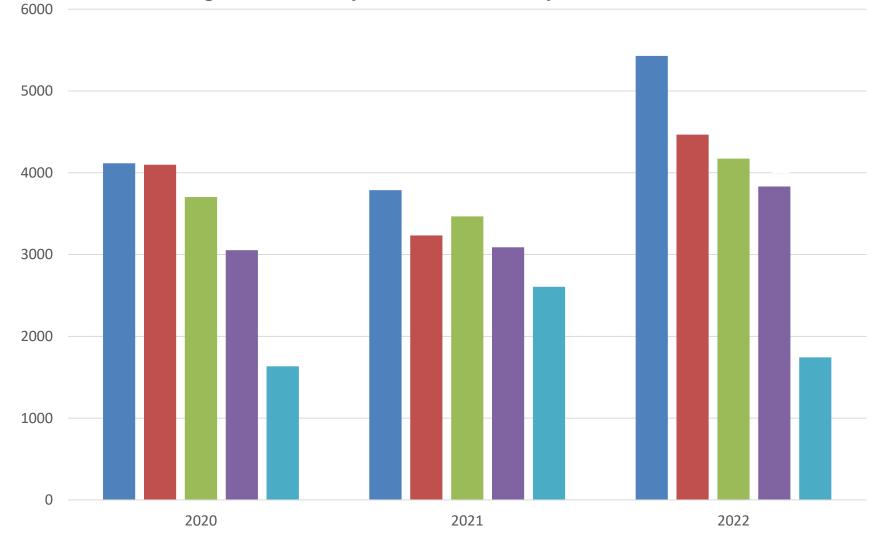
Salary for Graduate Student

Benefits for Graduate Student

Supplies and Materials

Optimizing Peanut Production and Pest Management Through Applied Research and Extension Activities

Summary for 2022 season


Objective 1. To develop solutions to agronomic issues associated with peanut production in North Carolina (12 trials)

- Peanut Response to Planting Date (1)
- Peanut Response to Kudos (3)
- Peanut Response to Inoculants (3)
- Peanut Response to Soil Stimulants and Micronutrients (3)
- Yield of Varieties under Drip Irrigation (1)
- Peanut Response to Mepiquat Chloride (1)

NC STATE UNIVERSITY

Peanut Yield (pounds per acre) for Bailey II on Five Planting Dates in 2020, 2021, and 2022

Left to right bars – Early, Mid, and Late-May and June 15 and 30

Objective 2. To cooperate with the plant pathologist, entomologist, and plant breeder at NCSU to refine IPM strategies for peanut in North Carolina (24 trials)

Influence of Rye Cover Crop on Pest Management in Peanut (2)

Influence of Rye Cover Crop on Leaf Spot Control Comparing Chlorothalonil and Sulfur (2)

Influence of Variety on Leaf Spot Control with Various Fungicide Programs (4)

Nematode Suppression with Propulse (1)

Thrips Control with In-furrow and Postemergence Systemic Insecticides (1)

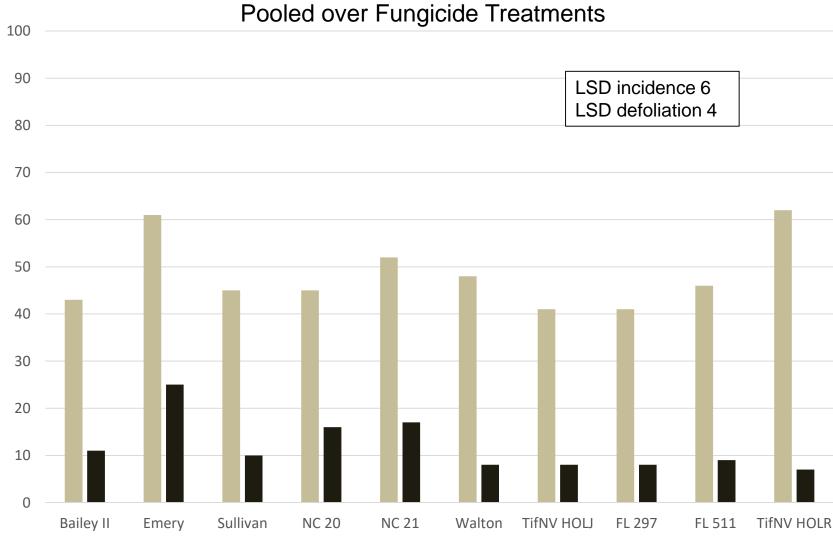
Duration of Leaf Spot Control with Miravis (3)

Duration of Leaf Spot Control with Miravis Applied to Different Varieties (2)

Southern Corn Rootworm Control with Foliar Insecticides (9)

Efficacy and Economics of Foliar-Applied Insecticides for Southern Corn Rootworm^a

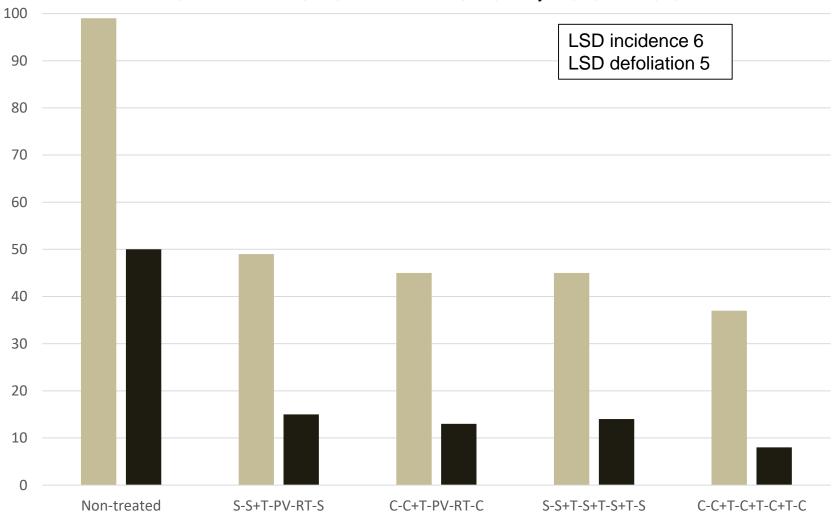
Treatment	Pod	Peanut	Economic
	damage %	yield lbs/acre	return ^b \$/acre
	/0	ins/dcie	alle
Non-treated control	3.0 ab	4,244 a	178 a
Steward, 11 oz/acre, 3 applications (\$75/acre)	3.3 a	4,333 a	124 b
Brigade, 6 oz/acre, 3 applications (\$12/acre)	2.0 b	4,294 a	178 a


^aData are pooled over 9 trials.

^bBase cost of \$832/acre less drying and hauling costs. Peanut price set at \$535/ton.

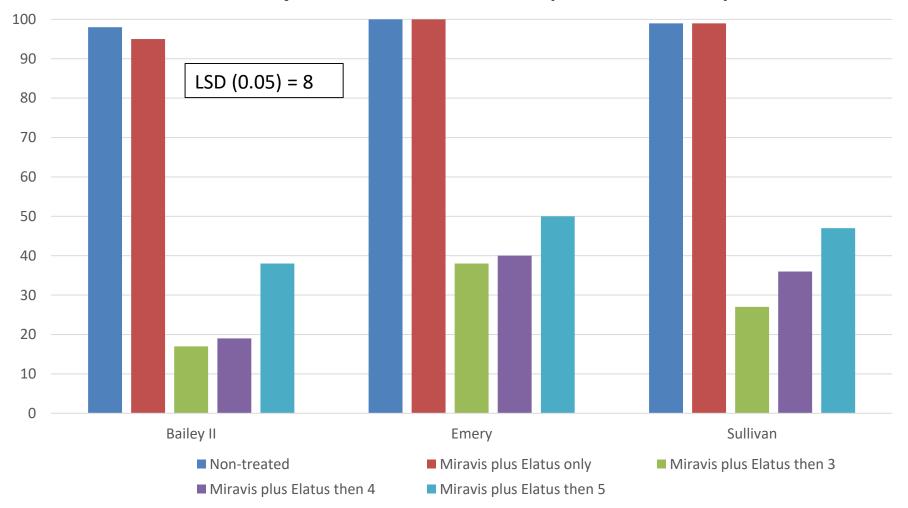
NC STATE UNIVERSITY

Leaf Spot Incidence and Canopy Defoliation in Late September as Influenced by Variety Selection

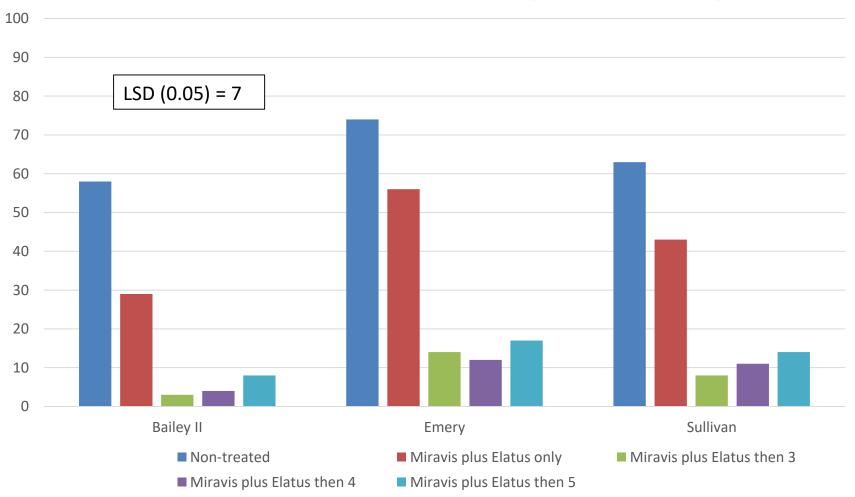


■ Incidence ■ Defoliation

Leaf Spot Incidence and Canopy Defoliation at Digging as Influenced by Fungicides


Pooled over Varieties

Abbreviations: C, Chlorothalonil; PV, Provost Silver; RT, Revytek; S, Sulfur; T, Tebuconazole



■ Incidence ■ Defoliation


Incidence of Leaf Spot (%) at Harvest Data are pooled over five trials (2021 and 2022)

Defoliation (%) at Harvest Data are pooled over five trials (2021 and 2022)

Peanut Yield (Ibs/acre) Data are pooled over five trials (2021 and 2022)

x∎

Pe	anut	Ris	k-N	C - 1	Excel

Cultivar	Bailey	
Plant Density	1 to 2 plants/row ft.	
Planting Date	May 03	
Row Pattern	Single (32 to 38 inches)	
Field		
Borders Early Season	Clean	
Borders Late Season	Mowed	
Irrigation	Irrigated	
Previous Weed Control	Good	
Seedbed	Conventional	
Weeds	C. Ragweed and Palmer A. (ALS and PPO Resistant)	
Field Crop History		
1 Year Ago	Cotton	
2 Years Ago	Sorghum	
3 Years Ago	Sorghum	
4 Years ago	Soybean	
Field Soil		
Drainage Class	Well	
pН	6.2	
Texture	Loam	
Leaf Spot Manageme	nt	
Chorothalonil Applicatio	r 3 or more	
Spray Schedule	Advisory throughout season	
Nematode History		
Northern Rootknot	Very Low (NCDA Index < 20)	
Peanut Rootknot	Very Low (NCDA Index < 20)	
Sting	Very Low (NCDA Index < 20)	
Pest		
Host Crops	Field Corn	

Arthropod	Index	Low	Med	High
Southern Corn Rootworr	95	$\bullet \bullet \bullet \bullet \bullet$	0000	
Spider Mites	70	$\bigcirc \bigcirc \bigcirc \bigcirc$		
Thrips	65	$\bullet \bullet \bullet \bullet \bullet$	0000	0000
Disease (Foliar)	Index	Low	Med	High
Early/Late Leaf Spot	58	$\bullet \bullet \bullet \bullet$	0	
Tomato Spotted Wilt Vir	100	$\bullet \bullet \bullet \bullet \bullet$	0000	$\bullet \bullet \bullet$
Disease (Soil Borne)	Index	Low	Med	High
Cylindrocladium Black R	65	$\bigcirc \bigcirc \bigcirc \bigcirc$		
Sclerotinia	130	\mathbf{O}		
Southern Stem Rot	50	$\bullet \bullet \bullet$		
Nematode	Index	Low	Med	High
Northern Rootknot	25	$\bullet \bullet$		
Peanut Rootknot	32	$\bigcirc \bigcirc \bigcirc \bigcirc$		
Sting	45	0000		
Plant	Index	Low	Med	High

Red Dots - Change practices to eliminate. Yellow Dots - Consider adjusting practices to reduce risk. Green Dots - Risk is acceptable for selected practices.

Estimated Cost: \$866/ac

\$0 \$277 \$554 \$831 \$1,108 \$1,385 **Create Production Log** Ŧ • Þ 巴 --+ 100% -1-へ 回 🧖 🖓 ^{2:02} PM 11/13/2020 2

Ready

– 0 ×

-

Objective 3. To conduct appropriate research to develop weed management strategies for traditional and herbicide resistant weeds in peanut in North Carolina (5 trials)

Evaluations of Anthem Flex and other Residual Herbicides (2)

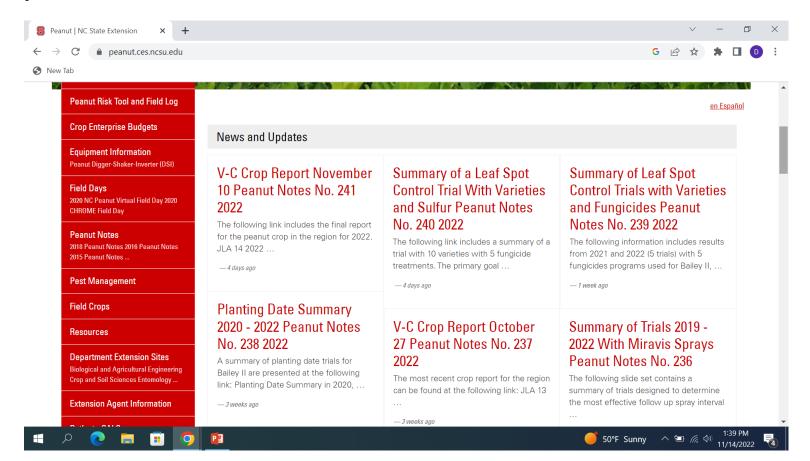
Influence of Previous Cropping System and Herbicides on Weed Populations in Peanut (2)

Impact of 2,4-DB on seed production by sicklepod (1)

Objective 4. To continue rotation and tillage trials in order to develop more effective cropping systems (6 trials)

Determining Peanut Yield in Long-term Cropping System Trials with Corn, Cotton, Peanut, and Soybean (2)

Determining Peanut Yield in Tillage and Rotation Trials Including Corn, Cotton, and Peanut (2)


Determining Peanut Yield in Cropping System Trials Including Tall Fescue and Agronomic Crops (2)

Objective 5. Assisting NC State Extension agents with pod maturity clinics

Objective 6. Enhancing Cooperative Extension Service agent expertise in managing peanut

Peanut Notes (241 to date), In-service training sessions, APRES, Field Days

Optimizing Peanut Production and Pest Management Through Applied Research and Extension Activities - 2022

Peer-reviewed articles related to peanut production and pest management (4)

Abstracts and Proceedings (11)

Extension Chapters and Bulletins, new and revised (11)