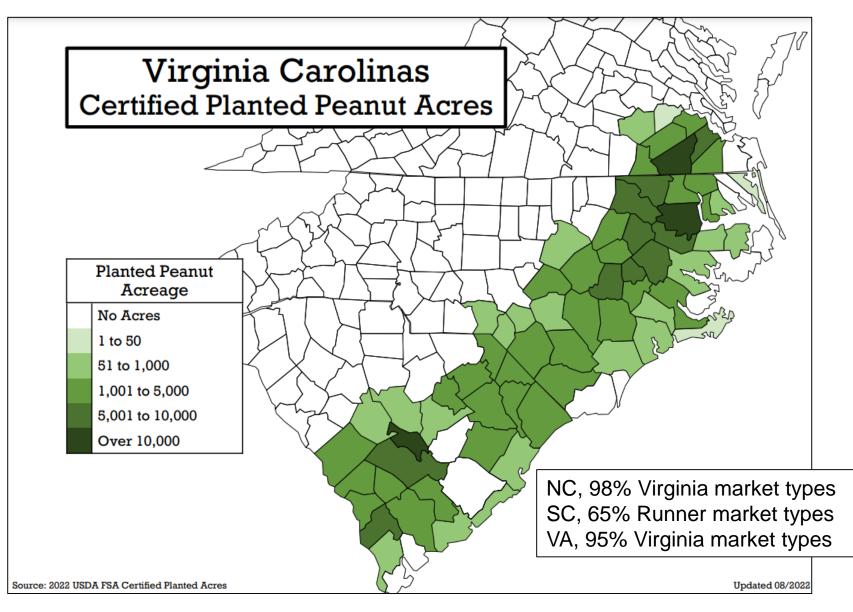
Common Questions Related to Peanut Agronomy and Fertilization Practices in North Carolina


What would members of the Soil Science Society of North Carolina be interested in?

> David Jordan Department of Crop and Soil Sciences North Carolina State University

> > 919-810-6611 david_jordan@ncsu.edu

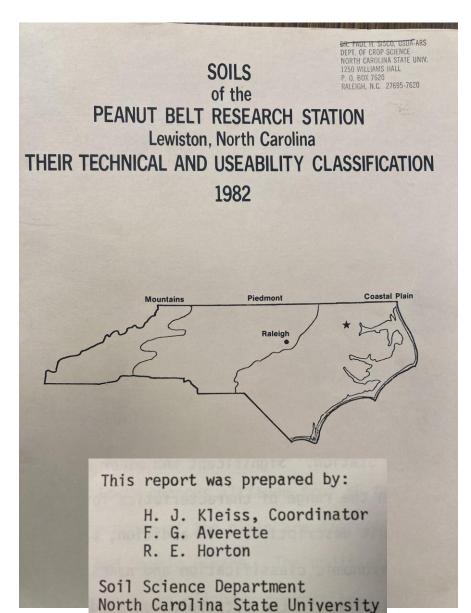
Qualifications for a crops person?

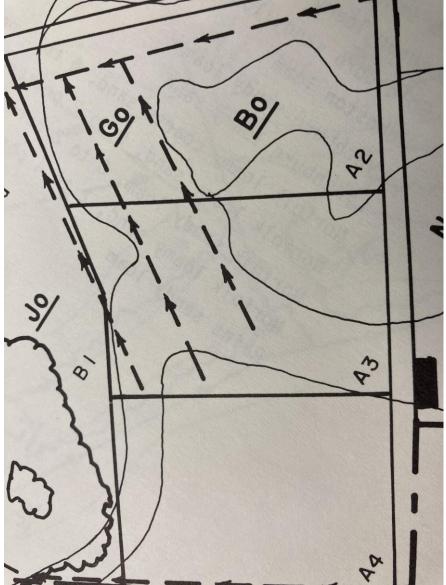
Simmons Kleiss Miner Cox Kamprath Cassel

Created by Ruth Fitzgerald and Ashley Collins, NCPGA

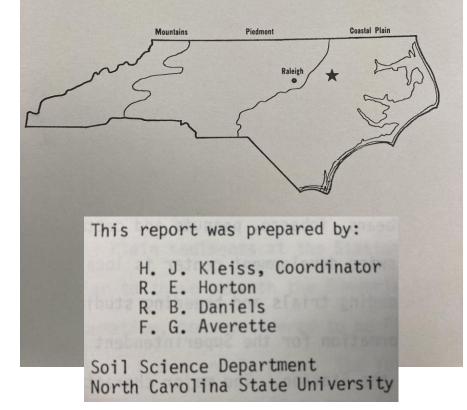
Walton – Sullivan – Emery – Bailey II

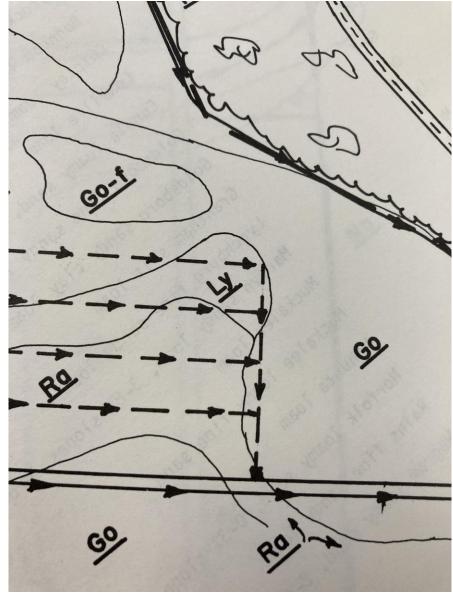
Concerns Weather patterns Input costs Contract prices Logistics of harvest Loss of tools Pests on the horizon





Tillage Practices in Peanut in North Carolina


Percentage of farmers listing a practice on at least a portion of their acreage


Tillage	1998	2004	2009	2014	2019
Disk	90	78	71	75	79
Chisel	25	23	27	12	21
Moldboard plow	58	17	7	5	6
Field cultivate	75	55	42	44	53
Rip and Bed	49	39	40	55	48
Bed	44	35	32	25	35
Reduced till	10	23	41	20	31
			Service.		

SOILS of the UPPER COASTAL PLAIN RESEARCH STATION Rocky Mount, North Carolina THEIR TECHNICAL AND USEABILITY CLASSIFICATION 1983

Crop Yield Response to Continuous Conventional and Strip Tillage

The rotation × tillage interaction was often not significant Peanut yields reflect average of long and short rotations Data are pooled over rotations and years

	Lewiston-Woodville (1999-2022) Norfolk and Goldsboro series		
Crop	Conventional till	Strip till	
Corn (bu/acre)	119	124 * (n = 12)	
Cotton (lbs lint/acre)	823	816 (n = 15)	
Peanut (lbs/acre)	3917	3899 (n = 9)	

	Rocky Mount (2000-2022) Lynchburg, Raines, and Goldsboro series			
Crop	Conventional till	Strip till		
Corn (bu/acre)	147	150 (n = 6)		
Cotton (lbs lint/acre)	904	901 (n = 11)		
Peanut (lbs/acre)	3871	3147 * (n = 9)		

Table 3-15. Advisory Index for Determining the Risk of Peanut Yield in Reduced Tillage Systems Being Lower Than Yield in Conventional-Tillage Systems

Category	Scoring Criteria	Your Score
Soil series Pod loss on finer-textured soils, such as those on the Roanoke and Craven series, is often greater than on coarser- textured soils, such as Conetoe and Wanda series, regardless of tillage system. Difficulty in digging can increase when these soils become hard in the fall if rainfall is limited.	Roanoke and Craven —40 points Goldsboro and Lynchburg — 20 points Norfolk — 10 points Conetoe and Wanda — 0 points	Soil series Your score:

Tillage intensity Peanut response to reduced-tillage systems is invariably correlated with the degree of tillage. Efficient digging can be difficult when peanuts are planted in flat ground in reduced-tillage systems. Although fields may appear to be flat and uniformly level, often fields are more rugged than they appear, and setting up the digger to match unforeseen contours in the field can be difficult. Strip tillage into flat ground is a better alternative than no tillage into flat ground, although digging peanuts planted on flat ground can be more challenging regardless of the tillage system. Strip tillage into preformed beds often results in yields approaching those of conventional tillage.	No tillage into flat ground — 35 points Strip tillage into flat ground — 10 points Strip tillage into stale seedbeds — 0 points	Tillage intensity Your score:
---	--	-------------------------------------

Risk of yield being lower in reduced tillage than in conventional tillage:35 or less — low risk 40 to 50 — moderate risk 55 or more — high risk	Total index value Your score:
---	-------------------------------------

Biological Nitrogen Fixation

Table 3-4. Peanut Yield Response and Economic Return at a Price of \$535 per Ton in Fields without a History of Peanuts versus Fields with Frequent Plantings of Peanuts (1999 – 2017) (Trials were conducted in North Carolina, South Carolina, and Virginia with Virginia market type varieties.)

	New Peanut Fields		Fields with a Recent History of Peanuts		
Inoculant Use	Yield (lb per acre)	Economic return (\$ per acre)	Yield (lb per acre)	Economic return (\$ per acre)	
No inoculant	3,460	5	4,280	227	
Inoculant	4,660	323	4,450	268	
Difference	1,200	318	170	41	
Number of Trials	52	52	43	43	
Years	1999 -	1999 – 2017		- 2017	

Table 3-5. Peanut Response from 14 Trials to Inoculation and Ammonium Sulfate at 571 Ib/acre (120 Ib actual N/acre) Applied when Nitrogen Deficiency Is First Visible


noculant	Ammonium Sulfate	Pod Yield (lb/acre)	Net Return (\$/acre)
No	No	3,530 c	20 c
Yes	No	4,850 a	353 a
No	Yes	4,550 b	271 b

Table 3-6. Peanut Response to Ammonium Sulfate (AMS) Applied in Mid-June to Early July and Estimates of Financial Return on Broadcast Applications to Correct a Nitrogen (N) Deficiency

Percent of Field that is N Deficient	Rows with N Deficiency (8 Planter Units)	Yield Based on Research	Actual Pounds not Realized due to N Deficiency	Value of Peanuts not Realized at a Price of 25 cents/lb	Financial Return from a Broadcast Application of AMS at 500 lb/ acre at a Cost of 29 cents/lb (\$145/acre)
12	1	4,420	122	31	-1 <mark>1</mark> 4
23	2	4,306	245	61	-84
38	3	4,148	367	92	-53
50	4	4,062	490	123	-22
63	5	3,940	612	153	8
75	6	3,818	734	184	39
88	7	3,696	856	214	69
100	8	3,574	<mark>9</mark> 78	245	100

Table 3-7. Ammonium Sulfate Rate Needed Relative to When a Nitrogen Deficiency is Observed

Days after Planting	Ammonium Sulfate Rate (lb/acre)
70 or less	500
71 to 100	400
101 to 130	300
More than 130	200

Table 3-3. Peanut Response to Soil pH and Gypsum Rate^a

	Peanut Yield Relative to Gypsum Rate			
Approximate Soil pH	0	0.5×	1.0×	
	Percent of Maximum Yield			
4.5	42 f	55 e	55 e	
5.2	55 e	56 e	59 e	
5.6	78 c	78 c	69 d	
6.0	84 b	97 a	95 a	

pH 6.0 and gypsum had 26% greater yield than pH 5.6 and gypsum pH 5.6 and gypsum had 17% lower yield than pH 5.6 and no gypsum pH 6.0 and gypsum had 11% greater yield than pH 6.0 and no gypsum